[The Genetic Code] DNA/RNA/Protein

What is a Gene?
- A region of DNA that controls a discrete hereditary characteristic, usually corresponding to a single protein.

What is RNA?
- The sequence of a strand of mRNA is based on the sequence of a complementary strand of DNA. Template for protein synthesis.

[The Genetic Code] DNA

DNA (deoxyribonucleic acid)
- Long polymer chain composed of four types of subunit
- Four subunit: Adenine (A), Cytosine (C), Guanine (G), Thymine (T)
- Double Helix
- Complementary base pair: A-T, G-C
- 25,000 genes in Human, 3 billion base pairs

[The Genetic Code] Transcription/Translation

Transcription
- DNA converts to a single stranded mRNA

Translation
- Sequence of mRNA translated to Protein
- These proteins perform various functions in and out of the cell

The Genetic Code inside DNA determines the sequence of amino acids that make up protein
Molecular Cell Biology

- http://www.whfreeman.com/lodish/
- http://bcs.whfreeman.com/lodish5e/
- Chapter 1 and Chapter 4

[The Genetic Code] Other Resources

- http://www.biology.iupui.edu/biocourses/N100/2k3ch13dogma.html

[Microarray] Microarray Technology

- (DNA) Microarray
 - also commonly known as gene chip, DNA chip, or biochip
 - a collection of microscopic DNA spots attached to a solid surface, such as glass, plastic or silicon chip forming an array for the purpose of expression profiling, monitoring expression levels for thousands of genes simultaneously.
- Used for genetic sequence analysis
 - New targets for drugs or other therapeutic intervention
 - Diagnostic markers for certain disease

- http://www.reactionbiology.com
[Microarray] DNA Microarray Manufacturing Methods

- **Photolithography**
 - Pioneered by Affymetrix Inc. (Largest market share)
 - Utilizing photolithography to pattern specific DNA arrays
 - Light-activated areas allow a single nucleotide to chemically couple to the substrate
 - Advantages
 - Precise
 - Small spot size
 - Control
 - Disadvantages
 - Lower Yield
 - Cost
 - Current GeneChips have 20-µm features and contain up to 400,000 different probes/chip (2001)

- **Mechanical Printing**
 - Spotting of pre-made sequence
 - Inkjet (Agilent Technologies Inc.)
 - Soft lithography & µCP (micro contact printing)
 - Advantages
 - Cheap
 - Longer Chains
 - Disadvantages
 - Less Specificity
 - Lower Density

Photolithography Diagram

Mechanical Printing Diagram

[Microarray] Case Study: Microarray Plate Technology

- **Affymatrix GeneChip Microarrays**
 - Presentation 1: An Overview of the Manufacturing of GeneChip® Microarrays
 - Presentation 2: The Structure, Function, and Applications of GeneChip® Microarrays

- **Spotting of Microarrays**
 - Movie 1: Microarray Video

[Microarray] DNA Hybridization

- **Strategy is in selective attachment of molecules for screening**
 - Use robot to spot many “target” molecules (DNA or protein).
 - Add second (unknown) sample.
 - Some molecules may bind to complementary molecules.
 - Wash.
 - Add fluorescent label that only attaches to bound molecules. Look for fluorescent locations.
 - Large number of spots = high throughput screen.

DNA Hybridization Diagram
[Microarray] Protein Microarray

- Implementation of a variety of protein-protein, protein-drug, and protein-small molecule interactions
- Implementation of a variety of sandwich assays
 - Detection can be colorimetric using secondary antibodies labeled with AP, HRP, biotinylated secondary antibodies that bind labeled streptavidin or direct fluorescent labeling.
- Implementation of reverse phase microarrays
- Implementation of reverse phase microarrays
- Implementation of synthetic proteins, peptides, and engineered proteins to detect the presence of proteins in complex samples

[Microarray] Antigen/Antibody Binding

- **Sandwich Assay**
 1. Plate is coated with a capture antibody
 2. Sample is added, and any antigen present binds to capture antibody
 3. Detecting antibody is added, and binds to antigen
 4. Enzyme-linked secondary antibody is added, and binds to detecting antibody
 5. Substrate is added, and is converted by enzyme to detectable form

http://www.proteinmicroarrays.com

http://en.wikipedia.org/wiki/ELISA