Microvalve is a pressure-containing mechanical device used to shut off or otherwise modify the flow of a fluid that passes through it.

Microvalve

- **Active valve**
 - Needs external energy for its operation
 - Needs actuators
- **Passive valve**
 - Utilizes energy from the flow itself for its operation
 - Needs no actuators
- **Mode**
 - Normally open
 - Normally closed valve

Biochemical Microfluidic Detection System
- Microfluidics
- Microtubes
- Magnetic beads

LOC Platform

- **Microvalves**
- **Micropumps**
- **Micromixers**
- **Microreactors**
- **Microfilters**
- **Detectors**
- **Microreservoirs**

LOC is a Combination of Microfluidic Devices

- for on/off control of fluids
- in LOC (lab-on-a-chip)
- in in-vivo/in-vitro drug delivery system

Microvalves are Essential Devices

- Simple device structure and disposable microvalves for life sciences applications
[Microvalve] Specifications

- A Good Microvalve has
 - Zero leakage
 - Zero dead volume
 - Low power consumption
 - High closing force (pressure range)
 - High valve capacity
 - Fast response time
 - Insensitive to environment such as temperature
 - Reliable
 - Biocompatible
 - Ability to work with any fluid

[Microvalve] Classification

<table>
<thead>
<tr>
<th>Categories</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Mechanical</td>
</tr>
<tr>
<td></td>
<td>Magnetic (Lecture 17)</td>
</tr>
<tr>
<td></td>
<td>Electric</td>
</tr>
<tr>
<td></td>
<td>Piezoelectric</td>
</tr>
<tr>
<td></td>
<td>Thermal</td>
</tr>
<tr>
<td></td>
<td>Bistable</td>
</tr>
<tr>
<td>Non-mechanical</td>
<td>Electrochemical</td>
</tr>
<tr>
<td></td>
<td>Phase change (Lecture 17)</td>
</tr>
<tr>
<td></td>
<td>Rheological</td>
</tr>
<tr>
<td>External</td>
<td>Modular (Lecture 11)</td>
</tr>
<tr>
<td></td>
<td>Pneumatic (Lecture 12)</td>
</tr>
<tr>
<td>Passive</td>
<td>Mechanical</td>
</tr>
<tr>
<td></td>
<td>Check valve (Lecture 18)</td>
</tr>
<tr>
<td>Non-mechanical</td>
<td>Capillary (Lecture 10)</td>
</tr>
</tbody>
</table>

[Microvalve] Actuation Mechanism

- **Electrostatic Actuation**
 - Two electrodes
 - High voltages for large forces
 - Small strokes

- **Piezoelectric Actuation**
 - PZT films
 - High forces
 - Small strokes

- **Pneumatic Actuation**
 - Large forces
 - Pressurized chamber
 - External pneumatic control system

Thermal Actuation
- Large forces and strokes
- Pressurized chamber
- Slow and heat transfer to fluids

Bi-metallic Actuation
- Heaters on bimetal film
- High current for large forces
- Slow and heat transfer to fluids
[Microvalve] Active Microvalves—Mechanical

SMA Actuation
- Shape Memory Alloy
- High forces and large strokes
- Slow and heat transfer to fluids

Magnetic Actuation
- Large forces and strokes
- Rapid response with relatively low power consumption
- Low IC-compatible driving voltages
- Assemble flexibility between magnetic actuators and valve parts

Advantages

<table>
<thead>
<tr>
<th>Actuation Type</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic actuation</td>
<td>Simplicity of materials, Fast actuation response</td>
<td>Trade-off between magnitude of force and displacement, Susceptible to pull-in limitation</td>
</tr>
<tr>
<td>Piezoelectric actuation</td>
<td>Fast response possible, Capable of achieving moderately large displacement</td>
<td>Requires complex material preparation, Degraded performance at low frequencies</td>
</tr>
<tr>
<td>Thermal actuation</td>
<td>Capable of achieving large displacement (angular or linear), Moderately fast actuation response</td>
<td>Relatively large power consumption, Sensitivity to environmental temperature changes</td>
</tr>
<tr>
<td>Magnetic actuation</td>
<td>Capable of generating large angular displacement, Possibility of using very strong magnetic force as bias</td>
<td>Moderately complex processes, Difficult to form on-chip, high-efficiency solenoids</td>
</tr>
</tbody>
</table>

[Microvalve] Ball Microvalve by External Magnetic Fields

Solenoid Plunger
- In 1979, a miniaturized electromagnetic microvalve was accomplished by using a solenoid plunger, which was physically connected to a silicon micromachined membrane by Terry et al [3].
- The microvalve was the first active micromachined valve, a component of an integrated gas chromatography system.

[Microvalve] ④ Ball Microvalve by External Magnetic Fields

Ball Microvalves Before Assembling
- Nickel Ball
- Diameter of the metal ball is 768 μm with 625 μm ID x 1190 μm OD tubing
- Diameter of the metal ball is 1190 μm with 1750 μm ID x 2450 μm OD tubing

Flow Rate of Ball Microvalves
- Operation
 - Operation current: 500 - 800 mA
 - Flow rate: 30 - 1300 L/min @ 0.3 psi

Leakage flow rate vs. the input pressure for DI water
- Flow rate of DI water vs. actuation current @ 0.3 psi

Pinch Microvalve by External Magnetic Fields
- Pinch Microvalve with Zero Dead Volume
- Pinch actuation on flexible tubing for fluidic switching
- Easily achievable pinch actuation using point force from plunger
- Compressive spring-loaded plunger to make normally-closed mode
- Flexible tubing with thin wall thickness to reduce the pinch force
- Biomedical grade silicone tubing
- Surface mountable scheme

Prototyped Pinch Valve
- Solenoid: STP1717-016
- Compressive spring-loaded plunger
- Biomedical grade silicone tubing (735 μm ID x 1200 μm OD)
- Bottom layer: guided groove for the tubing, round groove for the plunger

Flow Rate vs. Actuation Current (DI Water)
- Prototyped Pinch Valve
 - Operation
 - Pressure: 0 - 1190 μm (2X water)
 - Flow rate: 0 to 15 psi per 25 μl
 - Power consumption: 1.4 watts with 12 Volt
 - Reliability Test
 - 10% duty cycle: at least 24480 on/off (1-sec-on/9-sec-off)
 - 50% duty cycle: at least 10000 on/off (1-sec-on/1-sec-off)
 - 24 VDC: 6 μA at 12 Volt

Microvalves by Integrated Magnetic Inductors
- Magnetic Actuator
 - Planar solenoid inductors
 - Ni/Fe electroplated through-holes to confine the magnetic field
- Microvalves
 - Polyimide valve seats to reduce leakage flow rate
 - Ni/Fe permalloy to prevent buckling
 - Low stress Ni/Fe permalloy
- Motherboard
 - Fluidic channels and gold tracers
 - Low temperature biochemically compatible bonding
Microvalve④ Microvalves by Integrated Magnetic Inductors

- Bonded and Assembled on Microfluidic Motherboard
- Developed and fabricated in the microactuators laboratory
- Low temperature biochemical compatible Teflon bonding technique
- Ready to test by connecting inlet and outlet

Flow Rate Without MESA

<table>
<thead>
<tr>
<th>Actuation Current (mA)</th>
<th>Flow Rate for H2 Gas</th>
<th>Flow Rate for DI Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.1 μL/min</td>
<td>0.2 μL/min</td>
</tr>
<tr>
<td>200</td>
<td>0.3 μL/min</td>
<td>0.6 μL/min</td>
</tr>
<tr>
<td>300</td>
<td>0.5 μL/min</td>
<td>1.0 μL/min</td>
</tr>
<tr>
<td>400</td>
<td>0.7 μL/min</td>
<td>1.4 μL/min</td>
</tr>
</tbody>
</table>

Flow Rate With MESA

<table>
<thead>
<tr>
<th>Actuation Current (mA)</th>
<th>Flow Rate for H2 Gas</th>
<th>Flow Rate for DI Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.1 μL/min</td>
<td>0.2 μL/min</td>
</tr>
<tr>
<td>200</td>
<td>0.3 μL/min</td>
<td>0.6 μL/min</td>
</tr>
<tr>
<td>300</td>
<td>0.5 μL/min</td>
<td>1.0 μL/min</td>
</tr>
<tr>
<td>400</td>
<td>0.7 μL/min</td>
<td>1.4 μL/min</td>
</tr>
</tbody>
</table>

Microvalve① Approach for Ferro-Wax Microvalve

- Thermally Actuated Ferro-Wax Microvalve
 - A reversible microvalve without external pneumatic air/vacuum systems

Ferro-Wax

- Homemade new meltable magnetic material

Ferrofluid

- Developed by NASA in the 1960s, ferrofluids are used today in many applications such as loudspeakers, CD-ROMs, computers, and semiconductor fabrication.
- A stable colloidal suspension of sub-domain magnetic particles in a liquid carrier (an average size of about 10 nm).
- The magnetization of the ferrofluid responds immediately to the changes in the applied magnetic field and when the applied field is removed, the moments randomize quickly.

Paraffin Wax

- The wax present in petroleum crudes primarily consists of paraffin hydrocarbons (C18 - C36) known as paraffin wax and naphtenic hydrocarbons (C30 - C60).
- Hydrocarbon components of wax can exist in various states of matter (gas, liquid or solid) depending on their temperature and pressure. When the wax freezes it forms crystals.

Phase Change Microvalves

- Simple device structure and disposability
- For life sciences applications
- In-vivo/in-vitro drug delivery systems

Thermally Actuated Paraffin Microvalves as the Meltable Plug

- A reversible microvalve with external pneumatic air/vacuum systems
 - Anal Chem 76 3740–3748 2004
- An irreversible microvalve without external pneumatic air/vacuum systems
 - Sensors and Actuators B 98 328–336 2004

Ferrofluid

- Developed by NASA in the 1960s, ferrofluids are used today in many applications such as loudspeakers, CD-ROMs, computers, and semiconductor fabrication.
- A stable colloidal suspension of sub-domain magnetic particles in a liquid carrier (an average size of about 10 nm).
- The magnetization of the ferrofluid responds immediately to the changes in the applied magnetic field and when the applied field is removed, the moments randomize quickly.

Paraffin Wax

- The wax present in petroleum crudes primarily consists of paraffin hydrocarbons (C18 - C36) known as paraffin wax and naphtenic hydrocarbons (C30 - C60).
- Hydrocarbon components of wax can exist in various states of matter (gas, liquid or solid) depending on their temperature and pressure. When the wax freezes it forms crystals.
Hydrocarbon Based Ferrofluid + Paraffin Wax
- Success of mixing

Diester Based Ferrofluid + Paraffin Wax
- Failure of mixing
 - Precipitation of ferrite particles

Volume of ferrofluid : volume of paraffin wax = ~ 1 : 2
- Ferrofluid: Hydrocarbon-based ferrofluid (Liquids Researches, SHGS4-U, 450 Gauss, 200 cp)
- Paraffin Wax: paraffin hydrocarbons (C18 - C36) known as paraffin wax (Fluka, 76232, paraffin wax, purum, platelets, sp 68 – 74 °C)

Ferro-Wax Microvalve
- Si/Glass
 - Structure: inlet/outlet/stem ports and Y-branch
- Heater
 - Embedded a heater with a built-in sensor
 - The same amount of resistances to those of the heater/sensor of TMC-1000
 - Temperature control by TMC-1000

Ferro-Wax Microvalve Operation
- N2 Gas Line
- Pressure Regulator
- Pressure Controller
- Liquids
- Sensor
- Heater
- Magnet
- Microvalve
- Y-junction
- Inlet
- Outlet
- Pipette Tip

Melting Temp. Measurement
- TMC-1000 system + MicroPCR chip
- Range of Melting Temperature: Paraffin Wax (68 – 74 °C)
- Ferrofluid : Paraffin (1 : 2)

Ferro-Wax Plug
- Magnetic
- Fluidic

SiO2 Patterning
- Back-side Etching
- Glass Etching

Poly Si & Cr/Au Patterning
- Hole Sand Basting
- Anodic Bonding
Sol-Gel Microvalve
- Thermo-reversible polymer material (Sol-Gel; Methyl Cellulose)
- PCR reaction temp > phase change temp > Room temp
- Automatic valving during PCR

Deswelling of Hydrogel by Electrolysis Actuation
- pH-sensitive hydrogel
- Electrolysis Actuation
 - Anode (+): Acid (pH ↓)
 - $2\text{Cl}^- \rightarrow \text{Cl}_2 \uparrow + 2e^-$
 - Cathode (-): Base (pH ↑)
 - $2\text{H}_2\text{O(l)} + 2e^- \rightarrow \text{H}_2(\text{g}) + 2\text{OH}^-(\text{aq})$

Hydrogel Microvalves
- Deswelling of Hydrogel by Electrolysis Actuation
- Applications in LOC (Lab-On-a-Chip) or Drug Delivery System
- Useful in drug delivery system for in-vivo/in-vitro diagnosis and therapy
- Useful in microsensors & microactuators

Summary
- Phase Change Microvalves
 - ① Ferro-Wax Microvalve
 - World 1st microvalve using a melttable magnetic materials
 - ② Sol-Gel Microvalve
 - ③ Hydrogel Microvalve
- Applications in LOC (Lab-On-a-Chip) or Drug Delivery System
 - Useful in disposable biochip applications due to relatively low cost
 - Useful in some applications, where valving time is not critical, such as micro PCR
 - Useful in drug delivery system for in-vivo/in-vitro diagnosis and therapy
 - Useful in microsensors & microactuators
- Magnetically-Driven Microvalves
 - Biochemical Detection System
 - Membrane-type, ball-type, and pinch-type microvalves